USEFUL INFORMATION April 2006

1306 GEOMETRIC SOLUTIONS

1306-1 Areas of Plane Figures

Spandrel

Area =
$$0.2146 r^2 = 0.1073 c^2$$

Example $r = 3$
Area = $0.2146 \times 3^2 = 1.0314$ Ans.

Parabola

$$l = \text{length of curved line} = \text{periphery } - s$$

$$l = \frac{s^2}{8h} \left[\sqrt{c(1+c)} + 2.0326 \times \log(\sqrt{c} + \sqrt{1+c)} \right] \text{ in which } c = \left(\frac{4h}{s}\right)^2$$
Area = $\frac{l}{3} sh$
Example $s = 3$; $h = 4$;
Area = $\frac{l}{3} \times 3x4 = 8$ Ans.

Ellipse

Area =
$$\pi$$
 ab = 3.1416 ab
Circum = $2 \pi \sqrt{\frac{a^2 + b^2}{2}}$
(close approximation)

Example a = 3; b = 4
Area = 3.1416 x 3 x 4 = 37.6992 Ans.
Circum = 2 x 3.1416 x
$$\sqrt{\frac{3^2 + 4^2}{2}}$$
 = 6.2832 x $\sqrt{12.5}$ = 6.2832 x 3.5355 = 22.21 Ans.

$$\pi = 3.1416; A = \text{area}; d = \text{diameter}; p = \text{circumference or periphery};$$
 $r = \text{radius};$
 $p = \pi d = 3.1416 d.$
 $p = 2\sqrt{\pi A} = 3.54\sqrt{A}$
 $p = 2\pi r = 6.2832 r.$
 $p = \frac{2A}{d}$
 $d = \frac{p}{\pi} = \frac{p}{3.1416}$
 $d = 2\sqrt{\frac{A}{\pi}} = 1.128\sqrt{A}$
 $r = \frac{p}{2\pi} = \frac{p}{6.2832}$
 $r = \sqrt{\frac{A}{\pi}} = 0.564\sqrt{A}$
 $A = \frac{rd^2}{4} = 0.7854 d^2$
 $A = \frac{p^2}{12.57} = \frac{p^2}{4}$
 $A = \pi r^2 = 3.1416 r^2$
 $A = \frac{pr}{2} = \frac{pd}{4}$

Circular Ring

Area =
$$\pi$$
 (R^2 - r^2) = 3.1416 (R^2 - r^2)
Area = 0.7854 (D^2 - d^2) = 0.7854 (D - d)(D + d)
Area = difference in areas between the inner and outer circles.
Example. $R = 4$; $r = 2$
Area = 3.1416(4^2 - 2^2) = 37.6992 Ans.

Quadrant

Area =
$$\frac{\pi r^2}{4}$$
 = 0.7854 r^2 = 0.3927 c^2
Example. r = 3; c = chord
Area = .7854 |x 3² = 7.0686 Ans.

Segment

b = length of arc,
$$a$$
 = angle in degrees
 c = chord = $\sqrt{4(2hr-h^2)}$
Area = $1/2[br-c(r-h)]$
= $\pi r^2 \frac{a}{360} - \frac{c(r-h)}{2}$
When o is greater than 180° than $\frac{c}{2}$ x difference between r and h is added to the fraction $\frac{\pi r^2}{360}$
Example. r = 3; a = 120°; h = 1.5
Area = 3.1416x 3^2 x $\frac{120}{360} - \frac{5.196(3-1.5)}{2} = 5.5278$ Ans.

Area = $\frac{br^2}{2}$ or $\pi r^2 \frac{a}{360}$ ° a = angle in degrees; b = length of arcExample. r = 3; a = 120°

Area = 3.1416x $3^2 \times \frac{120}{360} = 9.4248$ Ans.

USEFUL INFORMATION April 2006

Square

Diagonal =
$$d = s\sqrt{2}$$

Area = $s^2 = 4b^2 = 0.5d^2$
Example. $s = 6$: $b = 3$. Area = $(6)^2 = 36$ Ans. $d = 6$ x 1.414 = 8.484 Ans

Rectangle and Parallelogram

Area =
$$ab$$
 or $b\sqrt{d^2-b^2}$
Example $a = 6$: $b = 3$.
Area = $3x6 = 18$ Ans.

Trapezoid

Area =
$$1/2 h(a + b)$$

Example. $a = 2$; $b = 4$; $h = 3$.
Area = $1/2 \times 3(2+4) = 9$ Ans.

Trapesium

Area =
$$1/2[a(h+h^1) + bh^1 + ch]$$

Example. $a = 4$; $b = 2$; $c = 2$; $h = 3$; $h^1 = 2$.
Area = $1/2[4(3+2)+(2x2)+(2x3)] = 15$ Ans

Triangles

Both formulas apply to both figures

Area =
$$1/2bh$$

Example. $h=3$; $b=5$
Area = $1/2(3x5)=7$ $1/2$ Ans.
Area = $\sqrt{S(S-a)(S-b)(S-c)}$ when $S=\frac{a+b+c}{2}$
Example. $a=2$; $b=3$; $c=4$
 $S=\frac{2+3+4}{2}=4.5$

Area =
$$\sqrt{4.5(4.5-2)(4.5-3)(4.5-4)}$$
 = 2.9 Ans

Regular Polygons

5 sides = 1.720477 S² = 3.63271 r²
6 sides = 2.598150 S² = 3.46410 r²
7 sides = 3.633875 S² = 3.37101 r²

Area 8 sides = 4.828427 S² = 3.31368 r²
9 sides = 6.181875 S² = 3.27573 r²
10 sides = 7.894250 S² = 3.24920 r²
11 sides = 9.365675 S² = 3.22993 r²
12 sides = 11.196300 S² = 3.21539 r²

n=number of sides r= short radius
S= length of side R= long radius

Area =
$$\frac{n}{4}$$
 S² cot. $\frac{180}{n}$ ° = $\frac{n}{2}$ R² sin. $\frac{360}{n}$ ° = nr^2 tan. $\frac{180}{n}$ °

USEFUL INFORMATION April 2006

1306-2 Triangles

RIGHT TRIANGLE

- (1) $\sin A = a / c = \cos B$
- (2) $\cos A = b / c = \sin B$
- (3) $\tan A = a / b = \cot B$
- (4) $\cot A = b / a = \tan B$
- (5) $\operatorname{sec} A = c / b = \operatorname{csc} B$
- (6) $\operatorname{csc} A = \operatorname{c} / \operatorname{a} = \operatorname{sec} B$
- (7) $\operatorname{vers} A = 1 \cos A = 1 b/c$
- (8) exsec A = sec A 1 = c/b 1
- (9) $a = \sqrt{(c+b)(c-b)}$
- (10) $b = \sqrt{(c+a)(c-a)}$
- (11) $c = \sqrt{(a)^2 + (b)^2}$
- (12) Area = (1/2) a b
- (13) Area = (1/2) b² tan A

Trigonometric Functions of any Angle

$$\sin (90^{0} + \theta) = \cos \theta$$

$$\cos (90^{0} + \theta) = -\sin \theta$$

$$\tan (90^{0} + \theta) = -\cot \theta$$

$$\cot (90^{0} + \theta) = -\tan \theta$$

OBLIQUE TRIANGLE

- (1) Law of Sines(When two angles and included side are known)
 - $(\sin A)/a = (\sin B)/b = (\sin C)/c$
- (2) Law of Tangents (When two sides and the included angle are known)

$$(a +b) / (a -b) = (tan (1/2) (A + B)) / (tan (1/2) (A-B))$$

(3) Law of Cosines (When two sides and the included angle are known or when all three sides are known)

$$a^{2} = b^{2} + c^{2} - 2bc$$
 cos A
 $b^{2} = a^{2} + c^{2} - 2ac$ cos B
 $c^{2} = a^{2} + b^{2} - 2ab$ cos A

(4) Half-angle formula (when all three sides are known)*

*
$$s = (1/2)(a+b+c)$$

$$\sin (1/2)A = \sqrt{\frac{(s-b)(s-c)}{bc}}$$

(5) Area = (1/2)ab sin C Area = (1/2)bc sin A Area = (1/2)ac sin B